Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.552
Filtrar
1.
J Microbiol Biol Educ ; 25(1): e0016523, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661403

RESUMO

Course-based undergraduate research experiences (CUREs) can reduce barriers to research opportunities while increasing student knowledge and confidence. However, the number of widely adopted, easily transferable CUREs is relatively small. Here, we describe a CURE aimed at determining the function of poorly characterized Saccharomyces cerevisiae genes. More than 20 years after sequencing of the yeast genome, nearly 10% of open reading frames (ORFs) still have at least one uncharacterized Gene Ontology (GO) term. We refer to these genes as "ORFans" and formed a consortium aimed at assigning functions to them. Specifically, over 70 faculty members attended summer workshops to learn the bioinformatics workflow and basic laboratory techniques described herein. Ultimately, this CURE was adapted for implementation at 34 institutions, resulting in over 1,300 students conducting course-based research on ORFans. Pre-/post-tests confirmed that students gained both (i) an understanding of gene ontology and (ii) knowledge regarding the use of bioinformatics to assign gene function. After using these data to craft their own hypotheses, then testing their predictions by constructing and phenotyping deletion strains, students self-reported significant gains in several areas, including computer modeling and exposure to a project where no one knows the outcome. Interestingly, most net gains self-reported by ORFan Gene Project participants were greater than published findings for CUREs assessed with the same survey instrument. The surprisingly strong impact of this CURE may be due to the incoming lack of experience of ORFan Project participants and/or the independent thought required to develop testable hypotheses from complex data sets.

2.
Heliyon ; 10(7): e27866, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623220

RESUMO

Delayed luminescence (DL) refers to the photon-induced ultra-weak luminescence emitted by samples after the light source is switched off. As a noninvasive method for health monitoring and disease diagnosis, DL has attracted increasing attention. The further development of this technology is valuable for the study of complex biological processes, such as different growth stages. If such studies were to be conducted in humans, large numbers of subjects of all ages would need to be recruited, and individual differences would be inevitable. The budding yeast Saccharomyces cerevisiae (S. cerevisiae) has a short population lifespan, and the growth phases can be monitored within dozens of hours. Therefore, S. cerevisiae is an ideal model organism for research. In this study, we investigated the physiological characteristics and DL emission of S. cerevisiae during growth in glucose-based media and entry into stationary phase, and the results showed that DL kinetic curves of yeast cells in the growing phase were obviously separated from those of stationary phase cells. Moreover, the metabolic and physiological characteristics of the yeast cell population were discussed using the DL emission parameters I0, τ and γ. We also discussed the possibility of assessing entropy using DL emission parameters. Our research demonstrates the potential of this technology to be used in wider applications.

3.
EFSA J ; 22(4): e8728, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38623402

RESUMO

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of Saccharomyces cerevisiae DBVPG 48 SF (BioCell®) as a zootechnical feed additive for horses, pigs and ruminants. In a previous opinion, the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concluded that the additive has the potential to be efficacious at the proposed conditions of use for horses, dairy ruminants and all pigs. However, the Panel was not in the position to conclude on the efficacy of BioCell® for calves, and, consequently, for other ruminants for fattening or rearing. The applicant provided three additional efficacy trials in veal calves to support the efficacy of BioCell® for ruminants for fattening or rearing. The three studies showed positive effects of the supplementation with the additive at 1.7 × 109 colony forming unit (CFU)/kg complete feed on the performance of veal calves. Considering the previously submitted studies in dairy cows and the new submitted trials, the FEEDAP Panel concluded that the additive has the potential to be efficacious for all ruminants at the proposed condition of use: 4.0 × 108 CFU/kg complete feed for dairy ruminants and 4.0 × 109 CFU/kg complete feed for ruminants for fattening and rearing.

4.
EFSA J ; 22(4): e8727, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38623403

RESUMO

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the efficacy of Saccharomyces cerevisiae CNCM I-4407 (Actisaf® Sc47) as a zootechnical feed additive (functional group: gut flora stabiliser) in cattle for fattening. The additive is already authorised for use in feed for dairy cows, calves for rearing, lambs for fattening, dairy goats, dairy sheep and dairy buffaloes. In a previous opinion, the EFSA Scientific Panel on Additives and Products or Substances used in Animal Feed (FEEDAP Panel) concluded that Actisaf® Sc47 was safe for cattle for fattening, the consumers and the environment. Additionally, the Panel considered that Actisaf® Sc47 is not a skin irritant, and no conclusions could be drawn on the additive's eye irritancy and dermal sensitisation potential. Due to the lack of adequate data, the Panel could not conclude on the efficacy of the additive in cattle for fattening at the proposed conditions of use. In the current application, the applicant submitted three trials to support the efficacy in cattle for fattening. However, two of them were not considered for the assessment. The other trial showed an improved zootechnical performance of the animals at the proposed use level of 4 × 109 CFU/kg complete feed. Considering the additive is authorised in dairy cows and calves for rearing and the requirements of the current Guidance on the assessment of the efficacy of feed additives, no further demonstration of efficacy is necessary to extrapolate the conclusions previously reached to all ruminants. The significant positive effect shown in one trial in cattle for fattening supports the above extrapolation. Therefore, the FEEDAP Panel concludes that Actisaf® Sc47 is efficacious as a zootechnical additive for cattle for fattening at the proposed conditions of use.

5.
Curr Dev Nutr ; 8(4): 102142, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38655128

RESUMO

Background: The administration of probiotics has been shown to be beneficial in asthma. The administration of Saccharomyces cerevisiae UFMG A-905 prevented asthma development. Traditionally, probiotics are administered using dairy-based matrices, but other vehicles (e.g., fruit juices, biscuits, candies, and breads) can be used. Objectives: This study aimed to assess the effect of bread fermented with S. cerevisiae UFMG A-905 in asthma prevention. Methods: Three breads were produced: fermented with commercial yeast, fermented with S. cerevisiae UFMG A-905, and fermented with S. cerevisiae UFMG A-905 with the addition of alginate microcapsules containing live S. cerevisiae UFMG A-905. Characterization of the microbial composition of the breads was performed. Male Balb/c mice were sensitized and challenged with ovalbumin. Breads were administered 10 d before the first sensitization and during sensitization and challenge protocol. Yeast fecal count, in vivo airway hyperresponsiveness, and airway and lung inflammation were assessed. Results: In UFMG A-905 bread, there was an increase in yeast number and a decrease in total and lactic acid bacteria. Animals that received S. cerevisiae UFMG A-905 fermented bread with microcapsules had a significant increase in yeast recovery from feces. S. cerevisiae UFMG A-905-fermented breads partially reduced airway inflammation, decreasing eosinophils and IL5 and IL13 concentrations. When adding microcapsules, the bread also diminished airway hyperresponsiveness and increased IL17A concentrations. Conclusions: S. cerevisiae UFMG A-905 was able to generate long-fermentation breads. Microcapsules were a safe and viable way to inoculate the live yeast into food. The administration of breads fermented with S. cerevisiae UFMG A-905 prevented asthma-like characteristics, being more pronounced when the breads contained microcapsules with live yeast.

6.
AMB Express ; 14(1): 42, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658521

RESUMO

The unsustainable and widespread utilization of fossil fuels continues to drive the rapid depletion of global supplies. Biodiesel has emerged as one of the most promising alternatives to conventional diesel, leading to growing research interest in its production. Microbes can facilitate the de novo synthesis of a type of biodiesel in the form of fatty acid methyl esters (FAMEs). In this study, Saccharomyces cerevisiae metabolic activity was engineered to facilitate enhanced FAME production. Initially, free fatty acid concentrations were increased by deleting two acetyl-CoA synthetase genes (FAA1, FAA4) and an acyl-CoA oxidase gene (POX1). Intracellular S-adenosylmethionine (SAM) levels were then enhanced via the deletion of an adenosine kinase gene (ADO1) and the overexpression of a SAM synthetase gene (SAM2). Lastly, the S. cerevisiae strain overproducing free fatty acids and SAM were manipulated to express a plasmid encoding the Drosophila melanogaster Juvenile Hormone Acid O-Methyltransferase (DmJHAMT). Using this combination of engineering approaches, a FAME concentration of 5.79 ± 0.56 mg/L was achieved using these cells in the context of shaking flask fermentation. To the best of our knowledge, this is the first detailed study of FAME production in S. cerevisiae. These results will provide a valuable basis for future efforts to engineer S. cerevisiae strains for highly efficient production of biodiesel.

7.
World J Microbiol Biotechnol ; 40(6): 180, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668960

RESUMO

DNA adduction in the model yeast Saccharomyces cerevisiae was investigated after exposure to the fungicide penconazole and the reference genotoxic compound benzo(a)pyrene, for validating yeasts as a tool for molecular toxicity studies, particularly of environmental pollution. The effect of the toxicants on the yeast's growth kinetics was determined as an indicator of cytotoxicity. Fermentative cultures of S. cerevisiae were exposed to 2 ppm of Penconazole during different phases of growth; while 0.2 and 2 ppm of benzo(a)pyrene were applied to the culture medium before inoculation and on exponential cultures. Exponential respiratory cultures were also exposed to 0.2 ppm of B(a)P for comparison of both metabolisms. Penconazole induced DNA adducts formation in the exponential phase test; DNA adducts showed a peak of 54.93 adducts/109 nucleotides. Benzo(a)pyrene induced the formation of DNA adducts in all the tests carried out; the highest amount of 46.7 adducts/109 nucleotides was obtained in the fermentative cultures after the exponential phase exposure to 0.2 ppm; whereas in the respiratory cultures, 14.6 adducts/109 nucleotides were detected. No cytotoxicity was obtained in any experiment. Our study showed that yeast could be used to analyse DNA adducts as biomarkers of exposure to environmental toxicants.


Assuntos
Benzo(a)pireno , Adutos de DNA , Poluentes Ambientais , Saccharomyces cerevisiae , Adutos de DNA/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Poluentes Ambientais/toxicidade , Poluentes Ambientais/metabolismo , Mutagênicos/toxicidade , Mutagênicos/metabolismo , DNA Fúngico/genética , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo
8.
FEMS Yeast Res ; 242024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38565313

RESUMO

Pretreatment of lignocellulose yields a complex sugar mixture that potentially can be converted into bioethanol and other chemicals by engineered yeast. One approach to overcome competition between sugars for uptake and metabolism is the use of a consortium of specialist strains capable of efficient conversion of single sugars. Here, we show that maltose inhibits cell growth of a xylose-fermenting specialist strain IMX730.1 that is unable to utilize glucose because of the deletion of all hexokinase genes. The growth inhibition cannot be attributed to a competition between maltose and xylose for uptake. The inhibition is enhanced in a strain lacking maltase enzymes (dMalX2) and completely eliminated when all maltose transporters are deleted. High-level accumulation of maltose in the dMalX2 strain is accompanied by a hypotonic-like transcriptional response, while cells are rescued from maltose-induced cell death by the inclusion of an extracellular osmolyte such as sorbitol. These data suggest that maltose-induced cell death is due to high levels of maltose uptake causing hypotonic-like stress conditions and can be prevented through engineering of the maltose transporters. Transporter engineering should be included in the development of stable microbial consortia for the efficient conversion of lignocellulosic feedstocks.


Assuntos
Maltose , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Maltose/metabolismo , Viabilidade Microbiana , Deleção de Genes , Sorbitol/metabolismo , Sorbitol/farmacologia , Xilose/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Glucose/metabolismo
9.
J Hazard Mater ; 471: 134270, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38640676

RESUMO

Alachlor, a widely used chloroacetanilide herbicide for controlling annual grasses in crops, has been reported to rapidly trigger protein denaturation and aggregation in the eukaryotic model organism Saccharomyces cerevisiae. Therefore, this study aimed to uncover cellular mechanisms involved in preventing alachlor-induced proteotoxicity. The findings reveal that the ubiquitin-proteasome system (UPS) plays a crucial role in eliminating alachlor-denatured proteins by tagging them with polyubiquitin for subsequent proteasomal degradation. Exposure to alachlor rapidly induced an inhibition of proteasome activity by 90 % within 30 min. The molecular docking analysis suggests that this inhibition likely results from the binding of alachlor to ß subunits within the catalytic core of the proteasome. Notably, our data suggest that nascent proteins in the endoplasmic reticulum (ER) are the primary targets of alachlor. Consequently, the unfolded protein response (UPR), responsible for coping with aberrant proteins in the ER, becomes activated within 1 h of alachlor treatment, leading to the splicing of HAC1 mRNA into the active transcription activator Hac1p and the upregulation of UPR gene expression. These findings underscore the critical roles of the protein quality control systems UPS and UPR in mitigating alachlor-induced proteotoxicity by degrading alachlor-denatured proteins and enhancing the protein folding capacity of the ER.

10.
Food Microbiol ; 121: 104513, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637075

RESUMO

Saccharomyces cerevisiae is a major actor in winemaking that converts sugars from the grape must into ethanol and CO2 with outstanding efficiency. Primary metabolites produced during fermentation have a great importance in wine. While ethanol content contributes to the overall profile, other metabolites like glycerol, succinate, acetate or lactate also have significant impacts, even when present in lower concentrations. S. cerevisiae is known for its great genetic diversity that is related to its natural or technological environment. However, the variation range of metabolic diversity which can be exploited to enhance wine quality depends on the pathway considered. Our experiment assessed the diversity of primary metabolites production in a set of 51 S. cerevisiae strains from various genetic backgrounds. Results pointed out great yield differences depending on the metabolite considered, with ethanol having the lowest variation. A negative correlation between ethanol and glycerol was observed, confirming glycerol synthesis as a suitable lever to reduce ethanol yield. Genetic groups were linked to specific yields, such as the wine group and high α-ketoglutarate and low acetate yields. This research highlights the potential of using natural yeast diversity in winemaking. It also provides a detailed data set on production of well known (ethanol, glycerol, acetate) or little-known (lactate) primary metabolites.


Assuntos
Saccharomyces cerevisiae , Vinho , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vinho/análise , Fermentação , Glicerol/metabolismo , Carbono/metabolismo , Etanol/metabolismo , Acetatos/metabolismo , Lactatos
11.
J Agric Food Chem ; 72(15): 8704-8714, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572931

RESUMO

Miltiradiene serves as a crucial precursor in the synthesis of various high-value abietane-type diterpenes, exhibiting diverse pharmacological activities. Previous efforts to enhance miltiradiene production have primarily focused on the mevalonate acetate (MVA) pathway. However, limited emphasis has been placed on optimizing the supply of acetyl-CoA and NADPH. In this study, we constructed a platform yeast strain for miltiradiene production by reinforcing the biosynthetic pathway of geranylgeranyl diphosphate (GGPP) and acetyl-CoA, and addressing the imbalance between the supply and demand of the redox cofactor NADPH within the cytoplasm, resulting in an increase in miltiradiene yield to 1.31 g/L. Furthermore, we conducted modifications to the miltiradiene synthase fusion protein tSmKSL1-CfTPS1. Finally, the comprehensive engineering strategies and protein modification strategies culminated in 1.43 g/L miltiradiene in the engineered yeast under shake flask culture conditions. Overall, our work established efficient yeast cell factories for miltiradiene production, providing a foothold for heterologous biosynthesis of abietane-type diterpenes.


Assuntos
Diterpenos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Abietanos , Acetilcoenzima A/metabolismo , NADP/metabolismo , Diterpenos/metabolismo , Engenharia Metabólica/métodos
12.
Biotechnol Lett ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578514

RESUMO

PURPOSE: CO2 fixation methods using green algae have attracted considerable attention because they can be applied for the fixation of dilute CO2 in the atmosphere. However, green algae generally exhibit low CO2 fixation efficiency under atmospheric conditions. Therefore, it is a challenge to improve the CO2 fixation efficiency of green algae under atmospheric conditions. Co-cultivation of certain microalgae with heterotrophic microorganisms can increase the growth potential of microalgae under atmospheric conditions. The objective of this study was to determine the culture conditions under which the growth potential of green algae Chlamydomonas reinhardtii is enhanced by co-culturing with the yeast Saccharomyces cerevisiae, and to identify the cause of the enhanced growth potential. RESULTS: When C. reinhardtii and S. cerevisiae were co-cultured with an initial green algae to yeast inoculum ratio of 1:3, the cell concentration of C. reinhardtii reached 133 × 105 cells/mL on day 18 of culture, which was 1.5 times higher than that of the monoculture. Transcriptome analysis revealed that the expression levels of 363 green algae and 815 yeast genes were altered through co-cultivation. These included genes responsible for ammonium transport and CO2 enrichment mechanism in green algae and the genes responsible for glycolysis and stress responses in yeast. CONCLUSION: We successfully increased C. reinhardtii growth potential by co-culturing it with S. cerevisiae. The main reasons for this are likely to be an increase in inorganic nitrogen available to green algae via yeast metabolism and an increase in energy available for green algae growth instead of CO2 enrichment.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38581537

RESUMO

L-asparaginase is an essential enzyme used in cancer treatment, but its production faces challenges like low yield, high cost, and immunogenicity. Recombinant production is a promising method to overcome these limitations. In this study, response surface methodology (RSM) was used to optimize the production of L-asparaginase 1 from Saccharomyces cerevisiae in Escherichia coli K-12 BW25113. The Box-Behnken design (BBD) was utilized for the RSM modeling, and a total of 29 experiments were conducted. These experiments aimed to examine the impact of different factors, including the concentration of isopropyl-b-LD-thiogalactopyranoside (IPTG), the cell density prior to induction, the duration of induction, and the temperature, on the expression level of L-asparaginase 1. The results revealed that while the post-induction temperature, cell density at induction time, and post-induction time all had a significant influence on the response, the post-induction time exhibited the greatest effect. The optimized conditions (induction at cell density 0.8 with 0.7 mM IPTG for 4 h at 30 °C) resulted in a significant amount of L-asparaginase with a titer of 93.52 µg/mL, which was consistent with the model-based prediction. The study concluded that RSM optimization effectively increased the production of L-asparaginase 1 in E. coli, which could have the potential for large-scale fermentation. Further research can explore using other host cells, optimizing the fermentation process, and examining the effect of other variables to increase production.

14.
Genetics ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560786

RESUMO

An attractive perfume is a complex mixture of compounds, some of which may be unpleasant on their own. This is also true for the volatile combinations from yeast fermentation products in vineyards and orchards when assessed by Drosophila. Here we used crosses between a yeast strain with an attractive fermentation profile and another strain with a repulsive one and tested flies responses using a T-maze. QTL analysis reveals allelic variation in four yeast genes, PTC6, SAT4, YFL040W, and ARI1, that modulated expression levels of volatile compounds (assessed by GC-MS) and in different combinations, generated various levels of attractiveness. The parent strain that is more attractive to Drosophila has repulsive alleles at two of the loci while the least attractive parent has attractive alleles. Behavioral assays using artificial mixtures mimicking the composition of odors from fermentation validated the results of GC-MS and QTL mapping, thereby directly connecting genetic variation in yeast to attractiveness in flies. This study can be used as a basis for dissecting the combination of olfactory receptors that mediate the attractiveness/repulsion of flies to yeast volatiles and may also serve as a model for testing the attractiveness of pest species such as Drosophila suzukii to their host fruit.

15.
ACS Synth Biol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657170

RESUMO

Microbial metabolism is a fundamental cellular process that involves many biochemical events and is distinguished by its emergent properties. While the molecular details of individual reactions have been increasingly elucidated, it is not well understood how these reactions are quantitatively orchestrated to produce collective cellular behaviors. Here we developed a coarse-grained, systems, and dynamic mathematical framework, which integrates metabolic reactions with signal transduction and gene regulation to dissect the emergent metabolic traits of Saccharomyces cerevisiae. Our framework mechanistically captures a set of characteristic cellular behaviors, including the Crabtree effect, diauxic shift, diauxic lag time, and differential growth under nutrient-altered environments. It also allows modular expansion for zooming in on specific pathways for detailed metabolic profiles. This study provides a systems mathematical framework for yeast metabolic behaviors, providing insights into yeast physiology and metabolic engineering.

16.
Biochemistry (Mosc) ; 89(3): 451-461, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38648765

RESUMO

Ionic liquids (ILs) are organic salts with a low melting point. This is due to the fact that their alkyl side chains, which are covalently connected to the ion, hinder the crystallization of ILs. The low melting point of ILs has led to their widespread use as relatively harmless solvents. However, ILs do have toxic properties, the mechanism of which is largely unknown, so identifying the cellular targets of ILs is of practical importance. In our work, we showed that imidazolium ILs are not able to penetrate model membranes without damaging them. We also found that inactivation of multidrug resistance (MDR) pumps in yeast cells does not increase their sensitivity to imidazolium ILs. The latter indicates that the target of toxicity of imidazolium ILs is not in the cytoplasm. Thus, it can be assumed that the disruption of the barrier properties of the plasma membrane is the main reason for the toxicity of low concentrations of imidazolium ILs. We also showed that supplementation with imidazolium ILs restores the growth of cells with kinetically blocked glycolysis. Apparently, a slight disruption of the plasma membrane caused by ILs can, in some cases, be beneficial for the cell.

17.
Food Chem ; 449: 139213, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38631134

RESUMO

This study took a novel approach to address the dual challenges of enhancing the ethanol content and aroma complexity in Laiyang pear wine. It focused on sorbitol as a pivotal element in the strategic selection of yeasts with specific sorbitol-utilization capabilities and their application in co-fermentation strategies. We selected two Saccharomyces cerevisiae strains (coded as Sc1, Sc2), two Metschnikowia pulcherrima (coded as Mp1, Mp2), and one Pichia terricola (coded as Tp) due to their efficacy as starter cultures. Notably, the Sc2 strain, alone or with Mp2, significantly increased the ethanol content (30% and 16%). Mixed Saccharomyces cerevisiae and Pichia terricola fermentation improved the ester profiles and beta-damascenone levels (maximum of 150%), while Metschnikowia pulcherrima addition enriched the phenethyl alcohol content (maximum of 330%), diversifying the aroma. This study investigated the efficacy of strategic yeast selection based on sorbitol utilization and co-fermentation methods in enhancing Laiyang pear wine quality and aroma.

18.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612788

RESUMO

Proteasome inhibitors are used in the therapy of several cancers, and clinical trials are underway for their use in the treatment of glioblastoma (GBM). However, GBM becomes resistant to chemotherapy relatively rapidly. Recently, the overexpression of ribonucleotide reductase (RNR) genes was found to mediate therapy resistance in GBM. The use of combinations of chemotherapeutic agents is considered a promising direction in cancer therapy. The present work aimed to evaluate the efficacy of the combination of proteasome and RNR inhibitors in yeast and GBM cell models. We have shown that impaired proteasome function results in increased levels of RNR subunits and increased enzyme activity in yeast. Co-administration of the proteasome inhibitor bortezomib and the RNR inhibitor hydroxyurea was found to significantly reduce the growth rate of S. cerevisiae yeast. Accordingly, the combination of bortezomib and another RNR inhibitor gemcitabine reduced the survival of DBTRG-05MG compared to the HEK293 cell line. Thus, yeast can be used as a simple model to evaluate the efficacy of combinations of proteasome and RNR inhibitors.


Assuntos
Glioblastoma , Saccharomyces cerevisiae , Humanos , Complexo de Endopeptidases do Proteassoma , Glioblastoma/tratamento farmacológico , Bortezomib/farmacologia , Células HEK293
19.
Virus Res ; 345: 199370, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38614253

RESUMO

Non-infectious virus-like nanoparticles mimic native virus structures and can be modified by inserting foreign protein fragments, making them immunogenic tools for antigen presentation. This study investigated, for the first time, the immunogenicity of long and flexible polytubes formed by yeast-expressed tail tube protein gp39 of bacteriophage vB_EcoS_NBD2 and evaluated their ability to elicit an immune response against the inserted protein fragments. Protein gp39-based polytubes induced humoral immune response in mice, even without the use of adjuvant. Bioinformatics analysis guided the selection of protein fragments from Acinetobacter baumannii for insertion into the C-terminus of gp39. Chimeric polytubes, displaying 28-amino acid long OmpA protein fragment, induced IgG response against OmpA protein fragment in immunized mice. These polytubes demonstrated their effectiveness both as antigen carrier and an adjuvant, when the OmpA fragments were either displayed on chimeric polytubes or used alongside with the unmodified polytubes. Our findings expand the potential applications of long and flexible polytubes, contributing to the development of novel antigen carriers with improved immunogenicity and antigen presentation capabilities.

20.
EFSA J ; 22(4): e8720, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601866

RESUMO

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the assessment of the application for renewal of the authorisation of Saccharomyces cerevisiae MUCL 39885 (Biosprint®) as a feed additive for cattle for fattening (category: zootechnical; functional group: gut flora stabiliser). The applicant provided evidence that the additive currently in the market complies with the conditions of authorisation. The EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) confirmed that the use of Biosprint® under the current authorised conditions of use remains safe for the target species, the consumers and the environment. Taking into account the nature of the additive, the FEEDAP Panel concludes that the additive should be considered as a potential skin and respiratory sensitiser, and any exposure through skin and respiratory tract is considered a risk. The additive is not a skin/eye irritant. There is no need to assess the efficacy of Biosprint® in the context of the renewal of the authorisation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...